BIRPARA COLLEGE

LESSON PLANNING

B.SC. MATHEMATICS PROGRAMME COURSE SYLLABUS UNDER CBCS SYSTEM 2023

MATHEMATICS(DSC)

SEMESTER-I

PAPER CODE-MATP 11 DSC

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

CALCULUS AND GEOMETRY

TOPIC	NUMBER OF LECTURES
Unit 1 : Calculus Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to the problems of the type $e \ ax+b \ sin \ x$, $e \ ax+b \ cos \ x$, $(ax + b) \ n \ sin \ x$, $(ax + b) \ n \ cos \ x$. L'Hospital's rule and it's applications. Concept of plane, simple and closed curves, parameterizing a curve. Pedal equation, envelopes, evolute, asymptotes, radius of curvature, curve tracing in Cartesian and polar coordinates of standard curves. Concavity, convexity, cusps and inflection points	15
Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin nx dx$, $\int cosnx$ dx , $\int secnx dx$, $\int tannx dx$, $\int (logx) n dx$, $\int sin nx$ cos mx dx etc. Arc length of a curve, arc length of parametric curves, area enclosed by a curve, area between two curves, area and volume of revolution.	15
Unit 3 : Geometry 2D: Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics.	15
Unit 4 3D: Spheres, cylindrical surfaces, central conicoids, paraboloids, hyperboloids, plane sections of conicoids, generating lines, classification of quadrics.	15

BIRPARA COLLEGE

LESSON PLANNING

B.SC. MATHEMATICS PROGRAMME COURSE SYLLABUS UNDER CBCS SYSTEM 2023

MATHEMATICS(DSC)

SEMESTER-II

PAPER CODE-MATP 21 DSC

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

REAL ANALYSIS

TOPIC	NUMBER OF LECTURES
Unit 1 Review of Algebraic and order	30
properties of \mathbb{R} , ϵ -neighborhood of a point in	
${\mathbb R}.$ Idea of countable sets, uncountable sets	
and uncountability of ${\mathbb R}.$ Bounded above	
sets, bounded below sets, bounded sets,	
unbounded sets. Suprema and infima.	
Completeness property of ${\mathbb R}$ and its	
equivalent properties. Archimedean property,	
density of rational (and irrational) numbers in	
${\mathbb R}$, intervals. Limit points of a set, isolated	
points, open set, closed set, derived set,	
illustrations of Bolzano-Weierstrass theorem	
for sets, compact sets in ${\mathbb R},$ Heine-Boreal	
Theorem.	
Unit 2 Sequences: Sequence, bounded	15
sequence, convergent sequence, limit of a	
sequence, lim inf, lim sup. Limit theorems.	
Monotone sequences, monotone	
convergence theorem. Subsequences,	
divergence criteria. Monotone subsequence	
theorem (statement only), Bolzano	
Weierstrass theorem for sequences. Cauchy	
sequence, Cauchy's convergence criterion.	
Unit 3 Series: Infinite series, convergence and	15
divergence of infinite series, Cauchy criterion.	
Tests for convergence: Comparison test, limit	

comparison test, ratio test, Cauchy's nth root
test, integral test. Alternating series, Leibniz
test. Absolute and conditional convergence

BIRPARA COLLEGE

LESSON PLANNING

B.SC. MATHEMATICS PROGRAMME COURSE SYLLABUS UNDER CBCS SYSTEM 2023

MATHEMATICS(DSC)

SEMESTER-III

PAPER CODE-MATP 31 DSC

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF

LECTURES ALLOTTED-60

ALGEBRA

ΤΟΡΙϹ	NUMBER OF LECTURES ALLOTTED
Unit 1 Complex numbers: Polar	15
representation, De Moivre's theorem	
for rational indices and its	
applications. Trigonometric,	
logarithm, exponential and	
hyperbolic functions of complex	
variable. Theory of equations:	
Fundamental theorem of Classical	
Algebra (statement only), relation	
between roots and coefficients,	
symmetric functions of roots,	
transformation of equation,	
Descartes' rule of signs, Sturms'	
theorem, cubic equation (Cardan's	
method), biquadratic equation	
(Ferrari's method), graphical	
representation of a polynomial.	
Inequality: $AM \ge GM \ge HM$,	

theorem of weighted means and <i>m</i> - th power theorem (statement only), Cauchy-Schwartz inequality (statements only) and its application.	
Unit 2 Equivalence relations, partition, partially ordered relation, functions, composition of functions, permutations, even and odd permutations, invertible functions. Well-ordering property of positive integers, principles of mathematical induction, division algorithm, divisibility and Euclidean algorithm, congruence relation between integers, Fundamental Theorem of Arithmetic (statement only), solution of linear congruence equations.	15
Unit 3 Matrices: Inverse of a matrix, characterizations of invertible matrices, elementary operations and matrices, echelon matrix, row/column reduced echelon matrix, rank of matrix, normal forms, equivalency and congruency of matrices. Eigen values and eigen vectors of a square matrix, characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding the inverse of a matrix.	15
Unit 4 Systems of linear equations: Consistency, the matrix equation AX=B of a system of linear equations, solution sets of linear systems, solution of linear systems using row reduced form.	15

BIRPARA COLLEGE

LESSON PLANNING

B.SC. MATHEMATICS PROGRAMME COURSE SYLLABUS UNDER CBCS SYSTEM 2023

MATHEMATICS(DSC)

SEMESTER-IV

PAPER CODE-MATP 41 DSC

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF

LECTURES ALLOTTED-60

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

TOPIC	NUMBER OF LECTURES ALLOTTED
Unit 1 : Differential Equation	20
Differential equations and	
mathematical models. General,	
particular, explicit, implicit and	
singular solutions of a differential	
equation. Exact differential equations	
and integrating factors, separable	
equations and equations reducible to	
this form, linear equation and	
Bernoulli equations, special	
integrating factors and	
transformations. General solution of	
homogeneous equation of second	
order, principle of super position for	
homogeneous equation, Wronskian:	
its properties and applications, Linear	
homogeneous and non-	
homogeneous equations of higher	
order with constant coefficients,	

Euler's equation, method of undetermined coefficients, method of variation of parameters.	
Unit 2 Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients. Basic theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions.	15
Unit 3 Lipschitz condition and Picard's Theorem (Statement only). Equilibrium points, Interpretation of the phase plane.	10
Unit 4 : Vector Calculus Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	15

BIRPARA COLLEGE

LESSON PLANNING

B.SC. MATHEMATICS PROGRAMME COURSE SYLLABUS UNDER CBCS SYSTEM 2023

MATHEMATICS(DSC)

SEMESTER-V

PAPER CODE-MATP 52 DSE

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

GROUP THEORY AND LINEAR ALGEBRA

ТОРІС	NUMBER OF LECTURES ALLOTTED
Unit 1 : Group Theory Groupoid, semigroup, monoid, groups, commutative groups, elementary properties of groups, finite semigroup with cancellation properties is a group, semigroup containing unique solution of $ax=b$ and $\clubsuit \spadesuit a=b$ is a group. Particularly, $\mathbb{Z}n$ group, Un group, Klein's 4 group, symmetric group Sn , alternating group An , matrix group $Mn(R)$, multiplicative group of n-th roots of unity, Dihedral group, quaternion group (through matrices) etc.	15
Unit 2 Subgroups and examples of subgroups, necessary and sufficient conditions for a subset of a group to be a subgroup, union and intersection of subgroups, centralizer, normalizer, center of a group, product of two subgroups.	10
Unit 3 Order of an element and a group. Generators, cyclic group and its properties, necessary and sufficient condition. Cosets, properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem.	10
Unit 4 : Linear Algebra Vector spaces, subspaces, algebra of subspaces, quotient	15

spaces, linear combination of vectors, linear span, linear independence, basis and dimension of a vector space, dimension of subspaces.	
Unit 5 Linear transformations, null space, range space, rank and nullity of a linear transformation, matrix representation of a linear transformation relative to ordered bases, algebra of linear transformations, correspondence between LTs and matrices. Isomorphisms.	10

BIRPARA COLLEGE

LESSON PLANNING

B.SC. MATHEMATICS PROGRAMME COURSE SYLLABUS UNDER CBCS SYSTEM 2023

MATHEMATICS(DSC)

SEMESTER-VI

PAPER CODE-MATP 62 DSE

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF

LECTURES ALLOTTED-60

LINEAR PROGRAMMING

TOPIC	NUMBER OF LECTURES ALLOTTED
Unit 1 Introduction to linear	10
programming problem (LPP),	
Problem formation, Type of solutions:	
Basic solution (BS), feasible solution	
(FS), basic feasible solution (BFS),	
degenerate and non-degenerate BFS.	
Matrix notation of LPP, graphical	
solution of LPP.	
Unit 2 Theory of simplex method,	20
convex sets, optimality and	
unboundedness, the simplex	
algorithm, simplex method in tableau	
format, introduction to artificial	
variables. Two-phase method, Big-M	
method and their comparison.	
Duality, formulation of the dual	
problem, primal-dual relationships,	

economic interpretation of the dual.	
Unit 3 Transportation and assignment problems: Mathematical formulation. North-west corner method, least cost method and Vogel approximation method for determination of solution of transportation problem. Algorithm for solving transportation problem. Hungarian method for solving assignment problem.	15
Unit 4 Game theory: Formulation of two-person zero sum games, solving two-person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	15