BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK,2022

MATHEMATICS(MAJOR)

SEMESTER-I

PAPER CODE-UMATMAJ11001

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

CLASSICAL AND LINEAR ALGEBRA

Торіс	Number of Lectures Allotted
Complex numbers: Polar representation, De Moivre's theorem for rational indices and its applications. Trigonometric, logarithm, exponential and hyperbolic functions of complex variable.	10
Theory of equations: Fundamental theorem of Classical Algebra (statement only), relation between roots and coefficients, symmetric functions of roots, transformation of equation, Descartes' rule of signs, Sturms' theorem, cubic equation (Cardan's method), biquadratic equation (Ferrari's method).	15
Inequality: $AM \ge GM \ge HM$, theorem of weighted means and m-th power theorem (statement only), Cauchy-Schwartz inequality (statements only) and its application.	5
Matrices: Inverse of a matrix, characterizations of invertible matrices, elementary operations and matrices, echelon matrix, row/column reduced echelon matrix, rank of matrix, normal forms, equivalency and congruency of matrices.	15
Systems of linear equations: Consistency in equivalence system, Solution of homogeneous system AX=0, Solution of nonhomogeneous system AX=B using row reduced echelon form.	10
Eigen values and eigen vectors of a square matrix, characteristic equation of a matrix, Cayley-Hamilton theorem, and its use in finding the inverse of a matrix.	5

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(SEC)

SEMESTER-I

PAPER CODE-UMATSEC11001(A)+ UMATSEC11001 (B)

TOTAL MARKS: 40(TH)+10(CE)+05(ATT)+20(PRAC)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-40

LOGIC, INTEGERS & BOOLEAN ALGEBRA

Торіс	Number of Lectures Allotted
Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, quantifiers, binding variables and negations.	10
Well-ordering property of positive integers, principles of mathematical induction, division algorithm, divisibility and Euclidean algorithm, congruence relation between integers, Fundamental Theorem of Arithmetic (statement only), solution of linear congruence equations, Chinese remainder theorem.	10
Boolean algebra, Boolean polynomials, minimal and maximal forms of Boolean polynomials, method of Quinn- McCluskey, Karnaugh diagrams. Logic gates, switching circuits and applications of switching circuits.	10
LOGIC, INTEGERS, AND BOOLEAN ALGEBRA (PRACTICAL) (Using hand calculation or any mathematical software)	10

1) Using congruence, find the remainder when a large integer is divided by an integer: (E.g. (a) 7 divides 333333 (b) 15 divides 17404 (c) 16 divides 777777 (d) 42 divides 31000020 (e) $4 15+25+35+45+\dots+1005$ (f) $13 1!+2!+\dots$ +70! (g) 17 (23 n +1+3.52 n +1), $n \ge 1$ etc.)	
2) Find the last digit/last two digits of a large integer (using congruence): (E.g. (a) 191919 (b) 7373 (c) 33100 (d) 1313 (e) 7100 etc.)	
3) Code validation problems: ISBN code, UPC code, EAN codes, Credit card number, GST number (GSTIN).	
4) Sketch XOR, NAND, NOR, and XNOR Gates, and find their truth table. Simplify the logical circuits using these gates and draw the simplest form.	
5) Sketch the logic circuits corresponding to simple real-life situations. (E.g.: Doorbell, Burglar Alarm, Freezer warning Buzzer, Mixed Task (mixing colors), inverter, Coffee/Soup vending machine, Automatic watering system, Automatic car door open warning system, temperature detector circuits, etc.)	

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(MAJOR)

SEMESTER-II

PAPER CODE-UMATMAJ12002

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

CALCULUS AND GEOMETRY

Торіс	Number of Lectures Allotted
Unit 1: Reduction formulae, derivations and	15
illustrations, integration techniques including	
trigonometric and logarithmic functions, arc	
length of curves including parametric curves,	
area enclosed by a curve and area between	
two curves.	
Unit 2: Higher order derivatives, Leibnitz rule	15
and applications, problems of the type	
e^(ax+b) sin x, e^(ax+b) cos x, (ax + b)^n sin x,	
(ax + b)^n cos x, L'Hospital's rule and its	
applications, parameterizations, pedal	
equation, envelopes, evolute, asymptotes,	
radius of curvature, concavity, convexity,	
cusps and inflection points.	
Unit 3: 2D Geometry - Reflection properties	15
of conics, rotation of axes, second degree	
equations, classification of conics using the	
discriminant, polar equations of conics.	
Unit 4: 3D Geometry - Spheres, cylindrical	15
surfaces, cones, ellipsoids, paraboloids,	
hyperboloids, plane sections of conicoids,	
generating lines, classification of quadrics.	

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(SEC)

SEMESTER-II

PAPER CODE-UMATSEC12002 (A)+ UMATSEC12002 (B)

TOTAL MARKS: 40(TH)+10(CE)+05(ATT)+20(PRAC)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-40

GRAPH THEORY

ТОРІС	NUMBER OF LECTURES ALLOTTED
Unit 1 : Definition, examples, basic properties	9
of graphs, pseudo graphs, complete graphs,	
bipartite graphs, isomorphism of graphs, paths,	
and cycles.	
Unit 2 : Eulerian circuits, Hamiltonian cycles,	9
Eulerian and Hamiltonian graphs,	
representation of a graph by a matrix,	
adjacency matrix, incidence matrix, and	
weighted graphs.	
Unit 3 : Traveling salesman's problem, shortest	12
path, Dijkstra's algorithm, Warshall algorithm,	
Tree and their properties, spanning tree,	
Kruskal's Algorithm, Forest, Connectivity,	
matching in bipartite graphs, matching in	
general graphs.	
GRAPH THEORY (PRACTICAL)	10
(Using hand calculation or any mathematical	
software)	
1. Travelling salesman problems: E.g.: Given a	
list of tourist spots in Darjeeling district and	
mention the distances between each pair of	
spots. If we start from Siliguri, what is the	
possible shortest path that visits each one	

exactly once and returns to the original place at Siliguri?". 2. Without lifting pencil puzzles (Euler Paths & Circuits): E.g.: How can you sketch a given shape on paper without taking off the pen as well as without tracing the same line twice? 3. Draw bipartite graphs for different networks like ecological networks, epidemiological networks, biomedical networks, biomolecular networks, etc. 4. Find the solution to matching problems (matching job seekers with job vacancies or assigning students to project supervisors, Stable Marriage problem), social network problems (connections between users and interests), etc. using bipartite graphs. 5. Sketch the graph of real-life situations like landing cables, LAN networks, a network of pipes for drinking water or natural gas, an electric grid, tour operations, etc., and find the solution using Kruskal's algorithm. 6. Sketching graphs related to the problems of digital mapping services in google maps (like GPS, to calculate the shortest or quickest route), social networking applications, robotic paths (like robot car to take to reach a specific location while avoiding obstacles), logistics, and transportation (most efficient routes for vehicles and to optimize delivery schedule), Emergency Services (ambulance, fire truck, or police car) and then find the shortest path using Dijkstra's algorithm

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(MAJ)

SEMESTER-III

PAPER CODE- UMATMAJ23003

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

REAL ANALYSIS

TOPIC	NUMBER OF LECTURES ALLOTTED
Unit 1: Review of Algebraic and order properties of \mathbb{R} , ε -neighborhood of a point in \mathbb{R} . Idea of countable and uncountable subsets of \mathbb{R} . Bounded above sets, bounded below sets, bounded sets, unbounded sets. Suprema and infima with their properties and supporting examples. Completeness property of \mathbb{R} and its equivalent properties. Archimedean property, density property of \mathbb{R} , intervals. Limit point and isolated point of a set, open set, closed set, derived set and their properties. Bolzano- Weierstrass theorem on limit point, Nested	15
interval theorem. compact sets in ${\mathbb R},$ Heine- Borel Theorem.	
Unit 2: Sequences: Sequence, bounded sequence, convergent sequence, limit and limit points of a sequence, uniqueness of limit of convergent sequences, lim inf & lim sup. Limit theorems, Monotone sequences, monotone convergence theorem, Sandwich theorem, Subsequences, divergence criteria. Monotone subsequence theorem (statement only), Bolzano Weierstrass theorem for sequences. Cauchy sequence, Cauchy's convergence	15

criterion.	
Unit 3: Limits of functions (ε-δ approach),	15
sequential criterion for limits, divergence	
criteria. Limit theorems, one sided limit. Infinite	
limits and limits at infinity. Continuous	
functions, sequential criterion for continuity.	
Algebra of continuous functions. Continuous	
functions on an interval, intermediate value	
theorem, location of roots theorem,	
preservation of intervals theorem. Uniform	
continuity, non-uniform continuity criteria,	
uniform continuity theorem.	
Unit 4: Series: Infinite series, convergence and	15
divergence of infinite series, Cauchy criterion.	
Tests for convergence: comparison test, limit	
comparison test, D'Alembert's ratio test,	
Cauchy's nth root test, integral test. Absolutely	
convergent series (Ratio test, Root test),	
conditionally convergent series (Leibniz's test)	
and alternating series. Re-arrangement of	
terms	

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(MAJ)

SEMESTER-III

PAPER CODE- UMATMAJ23004

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

DIFFERENTIAL EQUATION

TOPIC	NUMBER OF LECTURES ALLOTTED
Unit 1: Differential equations: General, particular, explicit,	30
implicit and singular solutions of a differential equation.	
First order and first-degree equations: Existence theorem	
(statement only), Exact equation, integrating factors and	
different calculating rules (statement of relevant results),	
linear equation and Bernoulli equations, special	
integrating factors and transformations. First order but	
not of first-degree equations: Clairaut's equation. General	
solution of homogeneous equation of second order,	
principle of super position for homogeneous equation,	
Wronskian: its properties and applications. Higher order	
linear equations with constant coefficients:	
complementary function and particular integral, method	
of undetermined coefficients, method of variation of	
parameters, Euler's homogeneous equation. Second order	
linear equations with variable coefficients: method of	
variation of parameters, reduction to normal form, change	
of dependent and independent variables.	
Unit 2: Systems of linear differential equations, types of	12
linear systems, differential operators, an operator method	
for linear systems with constant coefficients. Basic theory	
of linear systems in normal form, homogeneous linear	
systems with constant coefficients: Two Equations in two	
unknown functions.	
Unit 3: Lipschitz condition and Picard's Theorem	10
(Statement only). Autonomous system, Equilibrium points,	
Interpretation of the phase plane.	
Unit 4: Power series solution of a differential equation	8
about an ordinary point, solution about a regular singular	
point. Simple eigen value problems.	

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(MAJ)

SEMESTER-III

PAPER CODE- UMATMAJ23005

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

GROUP THEORY

TOPIC	NUMBER OF LECTURES ALLOTTED
Unit 1: Equivalence relations, partially ordered	20
relation, functions, permutations, even and odd	
permutations, invertible functions. Groupoid,	
semigroup, monoid, groups, finite and infinite	
groups, commutative groups. Basic properties	
of groups. Finite semigroup with cancellation	
properties, semigroup containing unique	
solution of $ax=b$ and $xa=b$. Well known	
groups: $\mathbb{Z}n$, Un , $Mn(R)$, $GL(n,\mathbb{R})$,	
$SL(n,\mathbb{R})$, Klein's 4 group, multiplicative group	
of n -th roots of unity, symmetric group Sn	
(e.g.S3,S4,S5,), alternating group An ,	
Dihedral group, Quaternion group etc.	
Unit 2: Subgroups and its basic properties.	10
Union, intersection and product of subgroups,	
necessary and sufficient condition for a subset	
of a group to be a subgroup. Centralizer,	
normalizer and center of a group.	
Unit 3: Order of a group, order of an element.	18
Cyclic groups, cosets, normal subgroups &	
factor/quotient groups and their basic	
properties. Lagrange's theorem and	
consequences including Fermat's Little	
theorem, Cauchy's theorem for finite abelian	

groups, necessary and sufficient conditions for	
a subgroup of a group to be a normal subgroup.	
Unit 4: Group homomorphisms &	12
isomorphisms and their basic properties,	
Cayley's theorem, First, Second and Third	
isomorphism theorems and their simple	
problems.	

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(SEC)

SEMESTER-III

PAPER CODE- UMATSEC23003 (A)+ UMATSEC23003 (B)

TOTAL MARKS: 40(TH)+10(CE)+05(ATT)+PRC(20)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-40

C-PROGRAMMING LANGUAGE

TOPIC	NUMBER OF LECTURES ALLOTTED
Unit 1 An overview of history of computers and	5
architecture of computer. Concept of compiler,	
assembler, machine language, high level	
language, object-oriented language, programming	
language and importance of C programming.	
Unit 2 Characters, Constants and variables data	5
types. Expression, statements, declaration.	
Operators: Arithmetic operators, increment and	
decrement operators, relational operators, logical	
operators, assignment operators, conditional	
operators.	
Unit 3 Conditional control statements: If, if-else,	10
nested if-else statements. Switch, break and	
continue statements. Loop control statements:	
For, while and do-while statements.	
Unit 4 Arrays, One, two and multidimensional	10
arrays, declaration and type of arrays. Reading	
and displaying elements of arrays. User-defined	
Functions: Function Prototype, Definition of	
functions, Type of functions, local and global	
variables in a function, type of return values,	
function declaration, nesting of functions, main ()	
function, recurrence of function. Library	
functions, e.g. stdio.h, math.h, string.h, stdlib.h,	
etc. No arguments and no return values,	
arguments but no return values, arguments with	
return values, no arguments but returns a value.	

	10
C-PROGRAMMING LANGUAGE (PRACTICAL)	
1. Write a program to print (a) first 100 natural	
numbers, (b) even numbers and (c) odd numbers	
in 1-100.	
2. Write a program to print all numbers between	
30 to 50, and all even numbers between 70 and	
95.	
3. Write a program to calculate the sum or	
product of (a) first 100 natural numbers, (b) first	
25 even natural numbers and (c) odd numbers	
between 30 and 90.	
4. Read 10 numbers from keyboard and find their	
sum, product and average.	
5. Write a program to find (a) the last digit (b)	
sum and product of all digits of a given number. 6.	
Read 3 numbers from keyboard and find the	
maximum and minimum of them.	
7. Write a program to find factorial of a given	
number.	
8. Find the maximum and minimum element of a	
given array.	
9. Sort the elements of an array in ascending and	
descending order.	
10. Write a program to print all numbers of a	
given array in reverse order.	
11. Write a program to print all (a) prime	
numbers (b) even numbers from a given array.	
12. Write a program to print a matrix.	
13. Write a program to find the addition and the	
product of two matrices.	
14. Find the transpose of a given matrix.	
15. Find the product of two matrices.	
16. Write a program to check whether a number	
is even or odd.	
17. Write a program to check whether a number	
is a prime number or not.	
18. Write a program to check whether a number	
is Armstrong number or not.	
19. Write a program to check whether a number	
is Perfect numbers.	
20. Compute the area of (a) rectangle (b) triangle	
having lengths of 3 sides (c) circle.	
21. Find the distance between two points (p,r)	
and (q,s).	
22. Find the intersection point of two intersecting	
straight lines $ax + by = c$ and $px + qy = r$.	
25. Find the solution of a quadratic equation.	
24. write a program to solve a system of two	
inear equations in two unknowns.	

25. Write a function to calculate addition, product	
of two numbers.	
26. Write a function to calculate the factorial of a	
number. etc.	

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(MAJ)

SEMESTER-IV

PAPER CODE- UMATMAJ24006

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

THEORY OF REAL AND COMPLEX FUNCTIONS

TOPIC	NUMBER OF LECTURES ALLOTTED
Unit 1: Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, absolute extremum theorem. Rolle's theorem. Lagrange and Cauchy mean value theorem, intermediate value property of derivatives- Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials.	18
Unit 2: Taylor's theorem with Lagrange's form and Cauchy's form of remainder, application of Taylor's theorem to convex functions. Taylor's series and Maclaurin's series expansions of exponential, trigonometric functions, $log(1+x)$, 1/(ax+b) and $(x + 1)n$ etc.	10
Unit 3: Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions. Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test.	12
Unit 4: Geometric representation of complex numbers, stereographic projection. Complex	20

functions, continuity and differentiability of	
complex functions, analytic functions, Cauchy-	
Riemann equation, harmonic functions, Milne's	
method (statement only). Conformal mapping,	
Bilinear transformation (simple problems).	

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK,2022

MATHEMATICS(MAJ)

SEMESTER-IV

PAPER CODE- UMATMAJ24007

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

MECHANICS

TOPIC	NUMBER OF LECTURES ALLOTTED
Dynamics	30
Unit 1: 30 classes Motion of a particle along a straight	
line. Simple harmonic motion, Two-dimensional equation	
of motion in Cartesian and Polar coordinate systems.	
Tangent and normal components of velocity and	
acceleration. Central force and central orbit. Motion in a	
plane under central forces. Motion under the inverse	
square law, Kepler's laws, modelling ballistics and	
planetary motion. System of particles, center of mass.	
Motion of a center of mass, motion about center of mass.	
Principle of conservation of linear momentum and angular	
momentum. Rigid body, centre of gravity, moment and	
product of inertia, radius of gyration. Theorems of parallel	
and perpendicular axis. Calculation of momentum inertia,	
Routh's law.	
<u>Statics</u>	30
Unit 2: 30 classes Co-planar forces: Astatic equilibrium,	
positions of equilibrium of a particle lying on a smooth	
plane curve under the action of given forces. Virtual work:	
Principle of virtual work, converse of the principle of	
virtual work. Forces in three dimensions: Poinsot's central	
axis. Moment of a force about a line, axis of a couple,	
resultant of any number of couples acting on a rigid body,	
reduction of a system of forces acting on a rigid body.	
Resultant force is an invariant of the system but the	
resultant couple is not an invariant. A given system of	
forces can have only one central axis. Wrench, Pitch,	
Intensity and Screw. Condition that a given system of	
forces may have a single resultant. Invariants of a given	
system of forces. Equation of the central axis of a given	
system of forces. Stable and Unstable equilibrium: Field of	
torces, conservative field, potential energy of a system.	

BIRPARA COLLEGE

LESSON PLANNING

FOUR YEAR UNDERGRADUATE PROGRAMME IN MATHEMATICS

THE NEW CURRICULAM FRAMEWORK, 2022

MATHEMATICS(MAJ)

SEMESTER-IV

PAPER CODE- UMATMAJ24008

TOTAL MARKS: 60(TH)+10(CE)+05(ATT)=75

TOTAL NUMBERS OF LECTURES ALLOTTED-60

RING THEORY AND LATTICE THEORY

TOPIC	NUMBER OF LECTURES ALLOTTED
Unit 1: Ring and its properties. Well-known rings: Matrix ring, $\mathbb{Z}n$, $\mathbb{Z}[i]$, $\mathbb{Q}[i]$, ring of quaternions, polynomial ring $R[x]$, ring of continuous functions etc. Divisors of zero, units, cancellation property \Leftrightarrow no zero divisors, Characteristics of a ring, integral domains, ID \Leftrightarrow cancellation property. Fields, every field is an ID, finite integral domain is a field, etc. Subring & subfield and their necessary and	18
sufficient conditions.	10
Unit 2: Ideals, ideal generated by a subset of a ring, principal ideal, operations on ideals: sum $(A+B)$, intersection, union & product (AB) etc. Prime ideals, maximal ideals, Quotient rings and its properties.	16
Unit 3: Ring homomorphisms & isomorphisms and their properties, Isomorphism theorems I, II & III and their simple applications.	10
 Unit 4: Lattice: Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle, lattices as ordered sets, lattices as algebraic structures, sublattices, products and homomorphisms. Definition, examples and properties of modular and distributive lattices. 	16